黒曜石の水和速度と化学組成の 関係について

渡辺 圭太・鈴木 正男

●キーワード:黒曜石 (obsidian),水和層 (hydration layer),水和速度 (hydration rate), 化学組成 (chemical composition),促進水和実験 (accelerated hydration experiment)

1. はじめに

黒曜石は火山の噴火に伴って形成されるガラス質火山 岩であり、日本の主な産地は北海道・関東・中部・九州 などがあげられ、その産出地は限られている。均質で貝 殻状断口を示す石材であることから石器などに加工し易 く、先史時代に当時の人々によって貴重な材料として広 域にわたって運搬あるいは交易され、使用された。黒曜 石は、産地によって化学組成が異なり、遺跡から出土し た黒曜石の化学組成を分析して産地を推定することがで きる。また、石器製作時に打ち割られた新鮮な表面には、 土の中に埋もれている間に表面から大気や地中の水分が 吸収され、内部への水の拡散によって水和層が形成され る(Gottsman *et al.*, 2001; Schott, 1987)。従って水和 する速度を用いて遺跡の年代を求めることができる。

このように先史時代のヒトと物の交流・移動を復原で きる優れた属性があることから,考古科学あるいは文化 財科学の主要な研究対象の一つになっている。

黒曜石水和層年代測定法とは、黒曜石表面に形成され る水和層の厚さを測定し、水和速度を用いて年代を求め る方法である。水和速度に影響を与える因子は外的因子 (効果水和温度・相対湿度・土壌の pH など)と内的因 子(化学組成)に分けることができる。内的因子である 化学組成についてはこれまでいろいろ議論されてきた (Friedman *et al.*, 1960 1994; Jones *et al.*, 1997),しか し、マグマに由来する水(構造水、H₂O⁽⁺⁾)を除いては、 あまり明確に影響を与える元素などが特定されていない。

本研究では、日本全国 31 ヶ所の露頭から採取した黒 曜石について水和速度と成分元素の関係を見いだすこと を目的とし、促進水和実験を行った。また、機器中性子 放射化分析、蛍光 X 線分析、含水量測定による主要成 分元素、及び微量成分元素の含有量の測定を行った。

2. 実験

2.1 化学組成

本研究では,分析方法として機器中性子放射化分析, 蛍光 X 線分析,含水量測定を用いて,主要成分元素及 び微量成分元素の含有量の測定を行った。

2.1.1 機器中性子放射化分析

機器中性子放射化分析は,種々の核種に熱中性子を照 射すると核種により固有のエネルギーのγ線を放出する ようになること(放射化)を利用した分析方法で,この エネルギーから核種を同定し,標準試料のγ線のカウン ト数と比較することにより各元素を定量する。標準試料 として,米国商務省基準局から出されている黒曜石標準 試料 NBS-278 を用いた。NBS-278 中に含まれない Eu, Nd, Ta, Tb, Zn, Zr の元素では,米国地質調査所標 準試料及び原子吸光標準試料によって較正されたイース ター島 Motu Iti 産の黒曜石を用いた(Ambiru *et al.*, 1999)。この2つの標準試料を用いることで,As,Ba, Ce, Cr, Cs, Eu, Fe, Hf, La, Lu, Na, Nd, Rb,
 Sb, Sc, Sm, Ta, Tb, Th, U, Yb, Zn, Zr の 23
 元素について, 黒曜石の機器中性子放射化分析を行った。

中性子の照射は、日本原子力研究所(JAERI: Japan Atomic Energy Research Institute) 4 号炉(JRR-4) にて、Tパイプ、熱中性子束(最大) 5.3×10^{13} n/cm²·s, 速中性子束(最大) 1.3×10^{13} n/cm²·s, カドミ比 3.8, 照 射時間 10 分間で行い、7 日間冷却した後、立教大学原 子力研究所において γ 線スペクトルを1時間計数した。 試料と標準試料の γ 線のカウント計数比、質量比、測定 開始時間の差による変動を補正することにより各元素の 含有量を算出した。

2.1.2 エネルギー分散型蛍光 X 線分析

試料にある範囲の波長の X 線(0.1 Å - 20 Å)を照射 すると、この一次 X 線のエネルギーが原子の内殻電子 を光電子として放出させるのに充分であれば、内殻電子 がはじきだされて、空の軌道が生じ、そこにエネルギー レベルの高い外殻から電子が遷移してくることにより、 両軌道のエネルギー差に相当するエネルギーをもった蛍 光 X 線が放出される。各元素はそのエネルギーレベル に固有のエネルギーの X 線を放出するため、この蛍光 X 線のエネルギーを測定することにより、元素の種類、 含有量がわかる (Mochizuki, 1996)。

測定は, SEIKO SEA-2010 エネルギー分散型蛍光 X 線分析装置を用いた。測定条件は, 電圧 50kV, 電流 3 ×10 ⁶A, 真空中で 600sec 測定, Li (Si) 検出器であ り, 同一試料に対し 3 回測定し, 標準試料として地質調 査所の JG-1a を用いて各元素の含有量を算出した。

2.1.3 含水量測定

カール・フィッシャー試薬と水は次のように反応する (Turek *et al.*, 1976; Westrich, 1987)。

$I_2 + SO_3 + 3C_5H_5N + H_2O$

 $\rightarrow 2C_5H_5N \cdot HI + C_5H_5N \cdot SO_3 \tag{1}$

$$C_5H_5 \bullet SO_3 + CH_3OH \rightarrow C_5H_5N \bullet HSO_4CH_3$$
(2)

クロノメトリーによるカール・フィッシャー滴定では、 「と SO₂ を主成分とするピリジン、メタノール混合溶液 に試料を加え、電気分解により陽極にヨウ素を発生させ て水と反応させる。その際ヨウ素はファラデーの法則に 基づき電気量に正比例して発生する。 $2I^- - 2e^- \rightarrow I_2$

一方,(1)からヨウ素 1 mol は水 1 mol と定量的に反応する。したがって水 1 mg は 10.71C に相当する。この原理を応用して電気分解に要したクーロン量から水分量を求めることができる。測定値はµgH₂Oの単位で水分の絶対量として表されるので,濃度に換算するには下式を用いる。

水分濃度%=
$$\frac{測定結果(\mu g H_2 O)}{試料採取量(g)}$$
 (4)

含水量を測定するために黒曜石を充分に磨り潰した後, 水分気化装置(VA21型)によって試料中の水分を気化 させ,デジタル微量水分測定装置(CA-02型)により, 試料中の含水量を計算した。

2.2 水和速度測定

黒曜石の水和層の厚さLと経過した年代*t*との間には 経験的に(A)の関係が成り立つ。

 $L^2 = k \cdot t \tag{A}$

また、水和速度kと効果水和温度Tとの間にはTレニ ウス式(B)の関係が成り立つことが知られている (Friedman & Smith, 1960; Friedman & Long, 1976)。 $k=A \cdot \exp(-E_a/RT)$ (B)

ここで,*L*:水和層の厚さ (μm),*k*:水和速度 (μm²/1000a),*t*:年代 (1000a),*A*:定数,*E_a*:活性化 エネルギー (J/mol),*R*:気体定数 (J/K・mol),*T*: 効果水和温度 (K) である。

したがって、黒曜石の*Ea*, *A*および、効果水和温度*T*がわかれば、水和速度*k*を算出でき、測定した水和層の 厚さ*L*と算出した水和速度*k*から黒曜石の剥離面形成年 代を算出することができる (Ambrose, 2001; Friedman *et al.*, 1997; Stevenson *et al.*, 1996, 1998)。

促進水和実験は、黒曜石促進水和実験リアクターを用 いて高温で短期間に水和層を人工的に作り、そのときの 水和速度と反応温度の関係から関数を導き、効果水和温 度での水和速度を推定する方法である。黒曜石は充分に 研磨した後、テフロン糸でリアクター内の中空に吊し、 蒸気温 104℃ (2.65/°K)、126℃ (2.51/°K)、152℃ (2.35/°K)で水和させた。一定期間反応させた後、黒 曜石を取り出し、後に説明する薄片法で水和層厚を測定

2

し、水和層厚と反応時間から(A)式に基づき各温度での水 和速度を求め、求めた水和速度と反応温度との関係から (B)式に基づき活性化エネルギーE_a、定数Aを算出し、効 果水和温度に対応する水和速度を決定した。

2.3 水和層厚測定

薄片法

薄片法は,黒曜石の剥離面に直行して切り出した小片 を樹脂に埋包した後に研磨する。鉱物用スライドグラス に貼り付け,切削,研磨を行い約 200μm 程度の薄片に し,試料面を鏡面に研磨した。これを光学顕微鏡で透過 光観察し(×1000),水和層の厚さを測定した。

3. 試料

本研究は、北海道の7 露頭、長野県の12 露頭、神津 島の2 露頭、箱根の4 露頭、島根県の1 露頭、佐賀県の 2 露頭、長崎県の3 露頭から採取した黒曜石、合計 31 点について機器中性子放射化分析、蛍光 X 線分析、含 水量測定、促進水和実験を行った。

各試料の原産地を表1に示した。

4. 結果

4.1 機器中性子放射化分析

黒曜石の機器中性子放射化分析で定量された微量成分, 23 元素(As, Ba, Ce, Cr, Cs, Eu, Fe, Hf, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U, Yb, Zn, Zr)の測定結果を表2に示した。単位は, Fe, Na は%, その他の元素は ppm である。

	表1	各試料0	の原産地	
Table 1	Geologic	sources	of obsidian	sample

No.	原	産地	No.		原産地	No.	原産地		
1		置戸 1	12		和田峠I	23		箱根Ⅱ	
2		置戸2	13		和田峠Ⅱ	24	関東	箱根皿	
3	•)(置戸3	14		新和田トンネル西	25		箱根IV	
4	北海道	置戸4	15	長野県	新和田トンネル西上	26	佐賀県	淀姫	
5		置戸5	16		星ヶ台	27		古里	
6	59	置戸6	17		星ヶ塔	28	島根県	隠岐	
7	- 3	白滝	18		冷山	29		星鹿半島I	
8		男女倉 I	19		麦草峠	30	長崎県	星鹿半島Ⅱ	
9	長野県	男女倉Ⅱ	20		神津島I	31	-	針尾島	
10		男女倉Ⅲ	21	関東	神津島Ⅱ				
11	5	男女倉Ⅳ	22		箱根I				

4.2 蛍光 X 線分析

黒曜石の蛍光 X 線分析による主成分元素の平均値と 標準偏差を表3に示した。

地質調査所の JG-1 a を標準試料として 6 種 (Al, Si, K, Ca, Ti, Fe)の含有量を得た。蛍光 X 線分析にお いては慣習として酸化物の形 (Al₂O₃, SiO₂, K₂O, CaO, TiO₂, Fe₂O₃)で示した。

同一試料に対し3回測定し,そのバラツキの程度を標 準偏差として示した。

測定元素の比率で表しているので単位は wt%となっている。

4.3 含水量測定

デジタル微量水分測定装置で測定した含水量 (H₂O⁽⁺⁾+H₂O⁽⁻⁾),また別に測定したH₂O⁽⁻⁾を表4に示 した。H₂Oは全含水量を示し、H₂O⁽⁻⁾は付着水、H₂O⁽⁺⁾ は構造水を示している。H₂O⁽⁺⁾はH₂OとH₂O⁽⁻⁾の差から 算出した。

黒曜石試料の固形部分の重量に対する水の重量比を百 分率で示した。

どの黒曜石も含水量は1%程度だが、地域及び原産地 よって差があり、全体平均は0.79%、北海道産は少なく 0.62%、長野県産の黒曜石含水量は他に比べて多く0.94 %、という結果が得られた。

4.4 促進水和実験

促進水和実験を行ったときの各反応温度における水和 層厚の測定結果を付表1に示した。なお、各試料の水和 層は5回測定を行い、平均を取ったものを測定値とした。 測定した水和層厚の二乗値と反応時間をプロットすると 図1のようになる。

(A)式より、これらの直線の傾きから各反応温度におけ る水和速度が求められる。各反応温度における水和速度 を算出したものが表5である。

反応温度と水和速度の関係を図2に示した。

(B)式より, 傾きが-Ea/R, 切片が lnA を示し, これ らから活性化エネルギー(Ea), 定数(A)を求めることが できる。算出結果を表 6 に示した。

3

Zr	76.4	146	46.6	151	79.3	15.0	58.7	187	74.0	77.5	165	104	145	105	141	72.1	107	81.9	117	59.9	58.4	154	106	151	75.9	65. 0	95.9	294	111	121	82.8
Zn	41.7	41.1	38. 7	36.0	30.4	52.7	43. 3	26.2	52.3	37.5	56.7	48.5	51.2	33.0	34.5	28.2	27.5	37.1	28.9	22.2	25.6	44.9	41.7	72.1	82.8	37.5	37.9	62.0	35.3	40.1	38. 2
۹۲-	2. 63	2.67	2.68	2.43	2.58	2.56	2.91	2.48	2.41	2.41	2.50	4.32	4.33	4.11	3.89	2.56	2.54	1.57	1.44	2.70	2. 77	3. 36	1.87	4.03	4.18	1.91	1.45	2.88	1.47	1.45	1.42
=	3.51	3.44	3.49	3. 31	3.48	3.11	3.01	4.14	3.41	3.56	3.98	7. 21	6.84	8.55	7.93	3.82	3.63	2.50	2.27	1.51	1.67	0.612	1.41	0.686	0.367	3.95	2.76	3. 23	2.84	2.87	3.16
Th	12.8	13. 2	12.8	12.7	13. 5	13. 3	12.4	17.9	15.4	16. 2	18.6	28.3	28.8	26.0	23.8	11.1	10.8	9.05	8.53	4.78	4.98	2.01	4.83	1.99	1. 22	15.3	15.5	25.3	16.2	16.3	16.8
цГР	0. 549	0.578	0.451	0.448	0.471	0. 525	0. 565	0.532	0.584	0.630	0.508	0.873	1. 13	0.967	0.862	0. 711	0.745	0.427	0.374	0.664	0.606	0. 732	0.356	1. 05	0.945	0.604	0.431	1.13	0.408	0.482	0.395
, a	0.443	0.493	0.614	0. 535	0. 595	0.434	0. 503	0. 742	0.844	0.702	0.954	1.66	1. 57	1. 52	1.34	0. 655	0. 713	0. 580	0.484	0.703	0.615	0.129	0. 321	0. 242	0. 0326	2. 19	1.94	3.60	1.80	1.87	1.86
E.	3. 13	3. 19	3. 05	2.92	3.00	2.94	3.41	3.77	3.85	3.65	3.62	4. 78	4.74	5.84	5. 33	4.28	4.13	3.41	3.14	3.05	2.97	3. 19	2.42	3.81	3.66	2.69	2.62	6.89	2.51	2.43	2.85
5	3.42	3.57	3. 56	3.48	3. 54	3. 50	2.86	2.93	3. 28	2.88	3.04	4.95	4.94	5.67	4.84	2.73	2.74	1. 91	1.82	2.94	3. 24	6.69	6. 26	10.8	12.9	1.69	1.46	3.12	1. 55	1.51	1.40
ч	. 545	. 535	0.510). 519	. 504	. 487	. 535). 677). 647). 637). 697	I. 25	I. 26	I. 29	I. 16). 616). 598	0.519). 501	0.273). 294). 512). 449). 637). 662). 662). 639). 421	0.704). 703). 795
씸	39 (44 (37 (39 (43 (40 (63 (67 (52 (57 (70 (267	276	238	218	37 (41 (01 (97.0 (64.3 (64.9 (26.6 (55.9 (28.8 (17.0 (72 (26 (97 (42 (43 (37 (
R	17.3 1	5.66	14.8	21.7	20.3 1	22.8 1	23.4 1	29.5	22.2	24.9	27.4	34.5 2	24.2 2	30.8 2	25.7 2	18.7	21.3 1	18.4 1	22.5	19. 7	18.0	16.6	10.9	21.6	22.5	18.9 1	20.4 1	62.5 1	23.8 1	19.6 1	19.6 1
eN eN	2.40	2.28	2.07	1.89	1. 79	1. 74	1. 58	1.41	1.49	1. 33	1.14	1. 18	1.09	2.51	2.33	2.33	2.17	2.71	2.42	2.57	2.36	2.36	1. 98	2.15	2. 03	1.48	1.54	1.51	1. 29	1. 15	2.02
=	0.456	0.481	0.442	0.463	0.433	0.466	0.477	0.460	0.456	0.419	0.447	0. 777	0. 783	0.761	0.698	0.441	0.426	0. 285	0. 272	0.439	0.442	0. 533	0.317	0. 597	0.624	0. 337	0. 288	0.484	0.274	0. 280	0.304
-	23. 2	22.8	22.1	21.0	21.0	21.3	19.2	20.8	20.8	19.7	18.9	16.3	15.1	21.5	20.3	14. 2	14.3	23. 2	21.6	18.8	18.1	9.32	13.9	9.06	6.94	19.3	29.5	35.5	27.8	26. 2	31.6
Η£	3.31	3.15	3.26	3.38	3.64	3.43	3.07	4.78	5. 63	5.00	4.35	5.01	4.87	4.94	5.07	3.88	3.82	3.99	3.61	2.74	2.57	5.09	3.91	5.47	4.42	2.87	4.66	11.5 (3.82	3. 75	3. 65
ه با	0.76	0.75	0.72	0.77	0.78	0.80	0.85	0.635	0.851	0.631	0.616	0.499	0.475	0.547	0.641	0.445	0.450	0.617	0. 585	0.513	0.642	1.14	1.66	1.53	1. 73	0.701	0.994	1. 45	0.915	0.855	0.827
ū	0.354	0. 521	0. 282	0.325	0.412	0. 283	0. 200	0.478	0.879	0. 717	0.514	0. 267	0.193	0.363	0.353	0.644	0.579	0. 589	0. 597	0.554	0.499	0. 779	0. 581	1. 15	1.10	0. 228	0.475	0.142	0.304	0. 274	0.415
e.	7.21	7.21	7.36	6.78	7. 33	7. 05	10. 2	10.4	8.54	9.43	10.8	21.6	22.2	19.9	18.1	7.84	8.04	5.88	5. 71	2.35	2.67	2. 38	2.77	2.42	2.39	11.6	6.31	1.76	8.01	8. 15	7.01
r.	1.90	2.77	2.29	1. 25	2.23	2.07	1.86	2.95	2.31	2.48	1.85	3.07	3.20	3.64	3. 13	2.41	2.51	2.27	1.65	2.82	2.84	3.61	3.17	4.46	3.98	1.91	2.38	3.55	1.94	2. 13	1.88
٩	44.1	44.6	45.2	44.5	43.8	43.6	45.8	50.1	52.3	51.7	51.3	49.9	49.8	51.9	48.5	37.1	37.6	46.1	43.3	37.8	37.4	23.8	29.1	25.3	19.4	39.5	56.5	148	57.0	55.7	57.8
Ba	1247	1234	1216	1213	1204	1201	1063	353	643	450	338	67.9	40.1	129	134	517	479	997	934	757	171	651	633	627	643	276	671	60.2	575	498	783
Ac	3. 45	3.13	3.34	3.05	3.21	3.27	3.41	4.04	3.68	3.65	4.11	5.66	6.09	8.85	8.16	4.47	4.40	4.53	4.19	2.28	2.32	4.57	3.52	5.65	6.13	4.39	3.46	3. 38	3.52	3.41	4.77
N	-	2	۳ ا	4	2	9	7	8	6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31

表2 機器中性子放射化分析の結果 (ppm, ただしFe, Na は%) Table 2 Results of INAA (ppm, except for Fe and Na; %)

No.	A 203	S i O ₂	K20	Ca0	T i 02	Fe ₂ O ₃
1	13.8±0.1	81.0±0.1	3.53 ± 0.07	0.717±0.007	0.105 ±0.005	0.874±0.009
2	13.6±0.1	81.2±0.1	3.54 ± 0.04	0.698 ± 0.003	0.101 ±0.002	0.846 ± 0.001
3	13.9±0.1	81.0±0.1	3.51 ± 0.04	0.709±0.013	0.0985±0.0042	0.827±0.002
4	13.4±0.1	81.3±0.1	3.69 ± 0.01	0.703±0.008	0.105 ±0.001	0.829 ± 0.009
5	13.7±0.1	80.9±0.2	3.70 ± 0.06	0.727±0.021	0.107 ±0.005	0.839 ± 0.016
6	14.0±0.0	81.0±0.2	3.48±0.13	0.692 ± 0.025	0.102 ±0.007	0.812 ± 0.007
7	14.0±0.1	80.3±0.2	4.35±0.03	0.434±0.013	0.0487 ± 0.0050	0.905 ± 0.016
8	13.7±0.2	80.6±0.2	4.37±0.04	0.542 ± 0.024	0.096 ± 0.001	0.708±0.021
9	13.7±0.1	80.6±0.2	4.17±0.03	0.632 ± 0.027	0.128 ±0.006	0.824±0.041
10	13.8±0.1	80.5±0.1	4.38±0.06	0.532 ± 0.018	0.0982 ± 0.0033	0.687±0.008
11	13.6±0.1	80.8±0.1	4.36±0.02	0.507 ± 0.011	0.0925 ± 0.0019	0.672 ± 0.006
12	14.0±0.2	80.8±0.2	4.04±0.06	0.490 ± 0.079	0.0465 ± 0.0032	0.579 ± 0.002
13	13.9±0.1	81.0±0.2	4.21±0.10	0.382 ± 0.005	0.0398 ± 0.0020	0.531 ± 0.003
14	13.9±0.1	80.9±0.1	4.05 ± 0.10	0.514 ± 0.070	0.058 ±0.010	0.619 ± 0.044
15	14.3±0.2	80.1±0.1	4.29±0.03	0.544 ± 0.056	0.0663±0.0150	0.685±0.043
16	13.7±0.1	81.3±0.1	4.08 ± 0.04	0.385 ± 0.007	0.0649 ± 0.0026	0.492±0.007
17	13.8±0.1	81.2±0.1	4.09 ± 0.03	0.390±0.015	0.0695 ± 0.0003	0.508 ± 0.003
18	13.3±0.3	81.5±0.3	3.66 ± 0.05	0.648±0.063	0.127 ±0.002	0.755 ± 0.008
19	13.5 ± 0.2	81.3±0.2	3.69 ± 0.02	0.606 ± 0.016	0.118 ±0.004	0.707±0.001
20	13.7±0.4	82.2±0.6	2.84±0.15	0.575 ± 0.020	0.0871 ± 0.0030	0.585 ± 0.023
21	14.0 ± 0.1	81.6 ± 0.1	3.11 ± 0.07	0.612±0.015	0.0837±0.0021	0.577±0.006
22	13.7±0.2	81.9 ± 0.3	1.54 ± 0.03	1.41 ±0.10	0.157 ±0.052	1.29 ± 0.03
23	15.3 ± 0.5	78.7±0.7	2.11±0.12	1.48 ±0.19	0.176 ±0.010	1.24 ±0.06
24	14.1±0.1	80.8±0.2	1.47 ± 0.02	1.69 ±0.04	0.150 ±0.003	1.72 ±0.03
25	13.8±0.2	81.2 ± 0.3	1.14 ± 0.01	1.71 ±0.12	0.219 ±0.003	1.95 ±0.01
26	14.0±0.3	80.4±0.1	4.05 ± 0.10	0.554 ± 0.029	0.0330±0.0142	0.930±0.128
27	14.6±0.1	79.6±0.1	3.73 ± 0.02	0.774±0.013	0.0619 ± 0.0061	1.19 ±0.02
28	14.9±0.1	77.5 ± 0.1	5.17 ± 0.04	0.570±0.018	0.138 ±0.003	1.64 ±0.01
29	14.3±0.1	80.2±0.1	3.86 ± 0.07	0.650 ± 0.022	0.0586 ± 0.0035	0.986 ± 0.013
30	14.3±0.1	80.1±0.1	3.93 ± 0.03	0.630 ± 0.011	0.0516±0.0027	0.972 ± 0.028
31	14.3 ± 0.1	80.4±0.1	3.83 ± 0.02	0.576±0.017	0.0477±0.0031	0.917±0.017

表3 蛍光 X 線分析の結果 -平均値と標準偏差-(wt%) Table 3 Results of EDXRF - average ± 1 standard deviation - (wt%)

表4 含水量測定の結果(%) Table 4 Results of water content measurements(%)

No.	H ₂ O	H ₂ O ⁽⁻⁾	H ₂ 0 ⁽⁺⁾	No.	H ₂ 0	H ₂ O ⁽⁻⁾	$H_20^{(+)}$	No.	H ₂ 0	H ₂ O ⁽⁻⁾	$H_2O^{(+)}$
1	0.55	4. 05×10^{-4}	0.55	12	1.04	1. 23 \times 10 ⁻³	1.04	23	0.64	1.86×10^{-3}	0.64
2	0.46	4. 57 × 10^{-4}	0.46	13	1.15	1. 17 × 10 ⁻³	1.15	24	0.72	9.36 \times 10 ⁻⁴	0.72
3	0.51	5. 18×10^{-3}	0.50	14	1.33	1. 63×10^{-3}	1.33	25	0.72	1.09×10^{-3}	0.72
4	0.44	5. 76 × 10 ⁻⁴	0.44	15	1.22	1. 33 \times 10 ⁻³	1.22	26	0.66	1.43×10^{-3}	0.66
5	0.50	7. 50 × 10^{-4}	0.50	16	0.80	1.01×10^{-3}	0.80	27	0.77	6. 74×10^{-4}	0.77
6	0.55	9. 22×10^{-4}	0.55	17	1.19	1. 27 × 10^{-3}	1.19	28	0.62	9. 38×10^{-4}	0.62
7	0.86	1.41×10^{-4}	0.86	18	0.76	1. 70 × 10^{-3}	0.76	29	0.70	5. 53 × 10 ⁻⁴	0.70
8	0.86	2.58 × 10 ⁻³	0.86	19	0.93	1.80 \times 10 ⁻³	0.93	30	0.83	2. 45×10^{-3}	0.83
9	0.61	8.83 \times 10 ⁻⁴	0.61	20	0.85	1. 75 × 10⁻³	0.85	31	0.86	3. 04×10^{-4}	0.86
10	0.84	1.35×10^{-3}	0.84	21	0.93	2. 29 × 10 ⁻³	0.93				
11	0.59	9. 42×10^{-4}	0.59	22	0.59	6. 66 $\times 10^{-4}$	0.59				

図1 反応時間と水和層厚の二乗値の関係 横軸に時間(months),縦軸に水和層厚(μm)の二乗値を とり、時間にともなう水和層厚の変化を示してた。

Fig. 1 Relationship between lengths of time in months (abscissa) and the square values of hydration rim thickness (ordinate)

図2 反応温度と水和速度の関係 横軸に 1000/°K,縦軸に水和速度(µm²/1000a)の自然対 数をとった。

Fig. 2 Relationship between elevated temperatures in thousands, reverse Kelvin (abscissa) and hydration rates (ordinate)

5. 考察

5.1 促進水和実験

得られた Ea, A から効果水和温度(EHT)を 12.0℃ として計算すると,水和速度は表7のようになった。

箱根Ⅲ,箱根Ⅳ,隠岐の黒曜石については,16ヶ月 と長期にわたり促進水和実験を行ったにもかかわらず, 水和層が確認できなかった,あるいは識別できなかった ため,水和速度を算出することができなかった。また, 実験を進めるにつれ,高温での促進水和実験において黒 曜石試料表面の消失(エロージョン)が見られた。その ため正確な水和層厚が測定できない可能性があり,今後

表5 各反応温度の水和速度(μm^{*}/1000a) Table 5 Hydration rates of elevated temperatures (μm^{*}/1000a)

No.	104°C	126°C	152°C	No.	104°C	126°C	152°C
1	1.57	5.93	24.6	17	2. 00	7.49	28.5
2	1.60	6.55	26.1	18	1.65	6.91	23. 2
3	1.62	6.83	30.7	19	1.95	8.57	27.9
4	1.74	6.94	31.3	20	1. 75	4.20	23. 9
5	1. 48	5.39	24. 2	21	1.71	6.23	26.9
6	1.53	5.33	30.0	22	1.42	7.67	29.0
7	1.92	4.82	28.9	23	1. 58	4.21	27.9
8	1.96	9.39	40.9	24	-	-	-
9	1.80	6.91	33.4	25		÷	3.
10	1.51	6.87	26.5	26	1. 73	5.62	27.7
11	1.69	6.58	35.3	27	2. 05	6.43	27.7
12	1.95	10.6	34.2	28	1 	-	
13	1.95	8.17	48.3	29	1.81	7.69	35.5
14	1.63	7.67	30.6	30	2.06	6.79	28.4
15	1.95	8.89	44.4	31	1.97	5.06	28.8
16	1.81	8.69	43.6				

表6 算出された -Ea/R, lnA, Ea, Aの値 (Ea:J/mol, R:J/K•mol)

Table 6 Calculated -Ea/R, InA, Ea, A (Ea : J/mol, R : J/K • mol)

No.	-Ea/R	InA	Ea	A	No.	-Ea/R	InA	Ea	A
1	9.20	33.7	76.45	4. 32 × 10 ⁻⁴	17	8.85	32.7	73.54	1.59×10^{14}
2	9.33	34.2	77.53	7. 13 × 10 ¹⁴	18	8.83	32.3	73.38	1.07×10 ¹⁴
3	9.81	35.7	81.52	3. 19 × 10 ¹⁵	19	9.02	33.3	74.96	2.90×10 ¹⁴
4	9.66	35.3	80.27	2. 14 × 10 ¹⁵	20	8.77	32.4	72.88	1. 18 × 10 ¹⁴
5	9.35	34.2	77.70	7.13×10 ⁻⁴	21	9.42	34.7	78.28	1. 17 × 10 ¹⁵
6	9.96	36.5	82.77	7. 11 × 10 ¹⁵	22	10.2	37.0	84.76	1. 17 × 10 ¹⁶
7	9.07	33.2	75.37	2.62×10 ¹⁴	23	9.69	35.1	80.52	1.75×10 ¹⁵
8	10.1	37.3	83.93	1.58×10^{16}	24	2	ų.	4	-
9	9.76	35.9	81.11	3.90×10 ¹⁵	25	-			
10	9.58	35.5	79.61	2. 61 × 10 ¹⁵	26	9.39	34.1	78.03	6. 45 × 10 ¹⁴
11	10.1	37.0	83.93	1.17×10 ¹⁶	27	8.72	31.7	72.46	5. 85 × 10 ¹³
12	9.55	35.4	79.36	2. 37 × 10 ¹⁵	28	-		-	-
13	10.7	39.4	88.92	1.29×10 ¹⁷	29	9.95	36.3	82.68	5.82×10 ¹⁵
14	9.72	36.0	80.77	4.31 × 10 ⁻⁵	30	8.96	32.6	74.46	1.44×10 ¹⁴
15	10.4	38.1	86.42	3. 52 × 10 ¹⁶	31	8.97	32.6	74.54	1.44×10^{14}
16	10.6	39.0	88.09	8.66×10 ¹⁶					

は、低温での促進水和実験を行い、より正確な水和速度 を求めていかなければならない。

今回は水和層の測定を光学的顕微鏡下で行った。しか し,顕微鏡下での観察は,水和層と新鮮な内部との間の 屈折率の違いによって生じるベッケ線(Becke's line)

表7 各露頭黒曜石の水和速度(µm²/1000a)

l'ab	le 7	Hydration rates of	geologic source	obsidians($\mu m^2 / 1000a)$
------	------	--------------------	-----------------	------------	--------------------

原産地	水和速度	原産地	水和速度	原産地	水和速度
置戸 1	4. 21	男女倉Ⅳ	4.86	神津島Ⅱ	5. 28
置戸 2	4.39	和田峠I	6.75	箱根I	3.42
置戸3	3.66	和田峠Ⅱ	6.53	箱根Ⅱ	3.06
置戸4	4.15	新和田トンネル西	6.77	淀姫	3.22
置戸5	4. 10	新和田トンネル西上	5.09	古里	3.06
置戸6	4.81	星ヶ台	6. 21	星鹿半島 I	4.08
白滝	4. 02	星ヶ塔	5.28	星鹿半島Ⅱ	3.25
男女倉I	6.55	冷山	3.80	針尾島	3.14
男女倉 Ⅱ	5.32	麦草峠	5.30		
男女倉Ⅲ	6.71	神津島I	5.18		

表8 水和速度と各元素の相関係数

右肩に「**」がついたものは1%の水準で有意な相関があ ることを示しており、「*」は5%の水準で有意な相関があ ることを示している。

 Table 8
 Relationship between hydration rates and chemical constituents of obsidians

元素	k – x	k – Inx	元素	k – x	k – lnx
As	0.379*	0. 339	Ta	0.004	0. 082
Ba	-0. 468**	-0.542**	Tb	0.109	0. 255
Ce	0. 032	0. 073	Th	0. 448*	0.359*
Cr	0.140	0. 202	U	0. 546**	0. 497**
Cs	0. 466**	0.260	Yb	0. 144	0. 292
Eu	0. 039	0. 058	Zn	0.003	-0.044
Fe	-0. 257	-0.396*	Zr	0. 025	0.061
Hf	0. 048	0. 121	A I 203	-0. 177	-0.179
La	-0.060	-0.100	S i 02	0.055	0.053
Lu	0. 191	0. 322	K20	0.154	0.240
Na	-0. 071	-0.108	Ca0	-0.371*	-0.445*
Nd	0. 121	0. 247	TiO ₂	-0.119	-0.093
Rb	0. 464**	0.390*	Fe ₂ 0 ₃	-0. 337	-0. 470**
Sb	0. 431*	0.345	H ₂ O	0. 533**	0. 505**
Sc	0.190	0. 183	$H_2O^{(\cdot)}$	0.054	0.240
Sm	0.133	0. 281	$H_2O^{(*)}$	0. 533**	0. 505**

**Significant at 1% level, *significant at 5% level.

を光学的に観察するものでり、実際にH₂Oが水和層中 にどのように浸透しているかを見ることが出来ない (Fujimoto, 1993; Anovitz *et al.*, 1999)。従って、SIMS による水和層のプロファイルを求め、水和層を決定する ことが望ましい。

5.2 水和速度と化学組成の関係

算出した水和速度と得られた個々の成分元素との回帰 分析を行い,単相関係数を計算し,表8に示した。回帰 分析では水和速度を目的変数とし,各元素を説明変数と した。説明変数となる各元素は,そのままのデータを用 いたもの(k-x)と,自然対数をとったもの(k-lnx) との2通りで計算をした(Snedecor, 1962)。

右肩に「**」がついたものは1%の水準で有意な相関 があることを示しており、「*」は5%の水準で有意な相 関があることを示している。

Ba, U, H₂O, H₂O⁽⁻⁾ については生のデータ,対数を とったもの共に1%の水準で水和速度と有意な相関があ る。Rb は生のデータ, Fe の酸化物は対数をとった方 が高い相関が見られた。As, Fe, Sb, Th, CaO 酸化 物については5%の水準で有意な相関が見られた。

黒曜石の主成分元素である Ca, Fe に 5 %水準で有意 な相関が認められたが、これまで多くの研究者が追求し て発見できなかったことであるため、さらに慎重に検証 していく必要がある。微量成分では、As, Ba, Cs, Rb, Sb, Th, U が相関があるとでた。Ba, Sb については、 機器中性子放射化分析により得られた結果の計数誤差が 大きいことが分かっているので、慎重に検討する必要が ある。

6. まとめ

実験期間を 16 ヵ月としてかなり長時間にわたり促進 水和実験行うことで、より正確な黒曜石の水和速度を決 定することができた。しかし高温においては表面消失が 起こり得るため、今後は低温で促進水和実験を行った方 がよいと考えられる。

これまでは、測定方法の限界から、主成分が中心になっ ており、微量成分について触れられることはほとんどな かったが、主・微量成分中から、いくつかの水和速度を 左右する内部因子の候補を見いだすことができた。水和 速度に影響を与える因子としての化学組成を今回は元素 のレベルで考えたが、今後は分子といった大きなまとま りを考え、晶子・微晶・斑晶の水和速度に対する影響を 考慮していかなければならない。

謝 辞

本研究を行うにあたり,機器中性子放射化分析の補助・ 説明をして頂いた戸村健児先生,蛍光X線装置の使用 法をご指導して頂いた沼津高等専門学校の望月明彦教授, 含水量測定の指導をして頂いた国立科学博物館分館の千 葉とき子氏に感謝の意を表します。

引用·参考文献

- Ambiru, M., Enomoto, Y., Kumagai, M., Ohtake, N., Stevenson, C. M. and Suzuki, M. 1999 Analytical Date of Nagano Geologic Obsidian by INAA. Institute for Atomic Energy Rikkyo University, pp. 1-32
- Ambrose, W. R. 2001 Obsidian Hydration Dating. Handbook of Archaeological Sciences, pp. 81-91
- Anovitz, L. M., Elam, J. M., Riciputi, L, R. and Cole, D. R. 1999 The failure of obsidian hydration dating : source, implication, and new directions. *Journal of Archaeological Science* 26, pp. 735-752
- Friedman, I. and Long, W. 1976 Hydration rate of obsidian. Science 191, pp. 347-352
- Friedman, I. and Smith, R. 1960 A new dating method using obsidian : Part I, The development of the method. *American Antiquity* 25, pp. 476-522
- Friedman, I., Trembour, W. and Hughes, R. E. 1997 Obsidian Hydration Dating. Chronometric Dating in Archaeology, New York : Plenum Press., pp. 297-321
- Friedman, I., Trembour, F. W., Smith, F. L. and Smith, G. I. 1994 Is obsidian hydration dating affected by relative humidity? *Quaternary Research* 41, pp. 185-190
- Fujimoto, K., Fukutani, K., Tsunoda, M., Yamashita, H. and Kobayashi, K. 1993 Hydrogen depth profiling using ¹H (¹⁵N, α γ)¹²C resonant nuclear reaction on water-treated olivine surfaces and characterization of hydrogen species. *Geochemical Journal* 27, pp. 155-162
- Gottsman, J. and Dingwell, D. B. 2001 Cooling dynamics of spatter-fed phonolite obsidian flows on Tenerife, Canary Islands. J. Volcanol. Geotherm. Res., 105, pp. 323-342
- Jones, M., Sheppard, P. J. and Sutton, D. G. 1997 Soil temperature and obsidian hydration Dating : a clarification of variables affecting accuracy. *Journal of Archaeological Science* 24, pp. 505-516
- Mazer, J. J., Stevenson, C. M., Ebert, W. L. and Bates, J. K. 1991 The experimental hydration of obsidian as a function of relative humidity and temperature. *American Antiquity* 56, pp. 504-513
- Mochizuki, A. 1996 Identification of Sources of Obsidian Found in Chuubu and Kanto Districts by X-Ray Fluorescence Analysis. *Advances in X-ray Chemical Analysis Japan* 28, pp. 157-168
- Schott, J. and Petit, J. C. 1987 New Evidence for the Mechanisms of Dissolution of Silicate Minerals. Aquatic Surface Chemistry, pp. 293-315
- Snedecor, G. W. (畑村又好, 奥野忠一, 津村善郎 共訳) 1962 スネデカー 統計的方法 改訂版, pp. 149-177
- Stevenson, C. M., Mazer, J. J. and Scheetz, B. E. 1998 Laboratory obsidian hydration rate : theory, method and application. In S. Shackley, ED) Method and Theory in Volcanic Glass Studies, London : Plenum Press, pp. 181-204
- Stevenson, C. M., Sheppard, P. J., Sutton, D. G. and Ambrose, W. 1996 Advances in the hydration dating of New Zealand Obsidian. *Journal of Archaeological Science* 23, pp. 233-242
- Suzuki, M. and Tomura, K. 1983 Basic data for identifying the geologic source of archaeological ob-

sidian by activation analysis and discriminant analysis. St. Paul's Review of Science 4, pp. 99-110

- Turek, A., Riddle, C., Cozens, B. J. and Tetley, N. W. 1976 Determination of chemical water in rock analysis by Karl Fischer titration. Chemical Geology, 17, pp. 261-267
- Westrich, H. R. 1987 Determination of water in volcanic glasses by Karl-Fischer titration. Chemical Geology, 63, pp. 335-340

(2006年7月11日受付, 2006年8月30日受理)

1		2Months			4Months			6Months			8Months	
104°	S	126°C	152°C	104°C	126°C	152°C	104°C	126°C	152°C	104°C	126°C	152°C
38 +	0.11	2.29 ± 0.08	5.18 ± 0.11	2.31 ± 0.08	3.85 ± 0.09	7.89 ± 0.09	2.99 ± 0.10	4.86±0.11	9.70 \pm 0.26	3.30 ± 0.04	5.51 ± 0.09	11.9 ± 0.04
98 ±	0.07	3.12 ± 0.15	6.62 ± 0.07	2.43 ± 0.10	5.00 ± 0.06	8.14 ± 0.06	2.73 ± 0.20	5.24 ± 0.05	11.4 ± 0.13	3.19 ± 0.05	6.35 ± 0.05	13.0±0.10
48+	0.09	1.89 ± 0.09	6.83 ± 0.46	2.46 ± 0.08	3.11 ± 0.06	8.83±0.06	2.88±0.13	4.57 ± 0.05	11.8 ±0.12	3.25 ± 0.04	6.02 ± 0.08	13.9 ± 0.05
$94\pm$	0.04	3.13 ± 0.03	5.45 ± 0.05	2.60 ± 0.11	3.99 ± 0.10	7.39 ± 0.10	2.83±0.10	4.87 ± 0.08	10.9 ± 0.08	3.36 ± 0.06	7.15 ± 0.07	12.7 ± 0.13
58+	0.11	2.51 ± 0.10	5.50 ± 0.22	2.21 ± 0.04	3.19 ± 0.04	8.78±0.04	2.90 ± 0.05	4.63±0.11	9. 28 ± 0.09	3.28 ± 0.08	5.93 ± 0.10	11.3 ± 0.06
87±	0.04	2.10 ± 0.05	6.26 ± 0.10	2.27 ± 0.07	3.78 ± 0.18	9.62 ± 0.18	2.64 ± 0.03	4.60±0.11	10.0 ± 0.07	3.08 ± 0.06	5.70 \pm 0.19	13.1 ± 0.08
109	0.06	2.55 ± 0.12	5.52 ± 0.09	2.57 ± 0.08	3.97 ± 0.05	 86±0.05 	3.03 ± 0.10	5.22 ± 0.07	11.5 ± 0.14	3.37 ± 0.07	5.79 \pm 0.20	13.5 ± 0.06
79+	:0.06	2.91 ± 0.04	7.18±0.15	2.37 ± 0.10	4.73 ± 0.17	12.4 ± 0.17	2.91 ± 0.08	6. 33±0. 13	15.4 ± 0.09	3.35 ± 0.05	8. 29 ± 0.13	17.0 ± 0.09
58 ±	= 0. 02	2.86 ± 0.11	6.31 ± 0.09	2.51 ± 0.06	5.04 ± 0.08	11.6 ± 0.08	2.92 ± 0.05	5.57 ± 0.08	13.8 ±0.10	3.27 ± 0.07	6.11 ± 0.04	14.8 ± 0.18
784	= 0. 04	3.05 ± 0.04	6.11 ± 0.02	2. 16 ± 0.05	4.88 ± 0.06	8.69 ± 0.06	2.77 ± 0.09	5.64 ± 0.07	10.7 ± 0.16	3.28 ± 0.05	6.56 ± 0.15	13.0 ± 0.08
27-	±0.07	2.35 ± 0.05	6.58 ± 0.03	2.30 ± 0.06	4.54 ± 0.09	8.76 ± 0.09	2.94 ± 0.09	6.15 ± 0.06	12.0 ± 0.08	3.26 ± 0.06	7.08 ± 0.04	13.7±0.11
95-	±0.13	2.77 ± 0.08	7.56 ± 0.07	2.36 ± 0.07	3.43 ± 0.09	10.8 ± 0.09	3.21 ± 0.06	5.86 ± 0.08	13.5 ± 0.13	3.84 ± 0.09	7.32 ± 0.06	14.1 ± 0.11
4	±0.07	2.72 ± 0.13	6.40 ± 0.06	2.18 ± 0.03	4.33 ± 0.14	12.7±0.14	2.66 ± 0.07	6.23 ± 0.08	15.3 ± 0.06	3.08 ± 0.09	7.77 ± 0.15	18.6 ± 0.10
36-	±0.08	2.09 ± 0.09	7.01 ± 0.05	2.06 ± 0.09	3.73 ± 0.08	9.26 ± 0.08	2.25 ± 0.04	5.57 ± 0.09	11.8 ±0.12	2.84 ± 0.08	7.62 ± 0.18	13.0 ± 0.05
57-	±0.05	3.28 ± 0.08	8. 21±0. 05	2.45 ± 0.10	6.00 ± 0.07	11.3 ± 0.07	3.02 ± 0.04	6.64 ± 0.10	14.9 ± 0.09	3.38±0.13	7.27 ± 0.09	17.5 ± 0.09
	±0.05	2.59 ± 0.06	5.98 ± 0.02	2.27 ± 0.05	4.73 ± 0.10	10.1 ± 0.10	2.67 ± 0.11	6.14 ± 0.05	14.7 ±0.12	3.33 ± 0.07	7.72 ± 0.20	18.3 ± 0.10
53-	±0.07	3.03 ± 0.09	5.64 ± 0.08	2.31 ± 0.05	4.25 ± 0.06	8.18±0.06	2.87 ± 0.04	5.31±0.11	10.8 ±0.08	3.47 ± 0.15	6.84 ± 0.08	13.4 ± 0.11
10	±0.05	2.49 ± 0.05	6.76 ± 0.38	2. 15 ± 0.03	5.06 ± 0.06	8.15 ± 0.06	2.57 ± 0.07	5.41 ± 0.06	9. 18 ± 0.08	3.28 ± 0.09	5.75 \pm 0.12	11.9 ± 0.04
31 +	= 0. 08	2.34 ± 0.09	5.95 ± 0.07	2. 37 ± 0.08	4.58 ± 0.06	7.14 ± 0.06	3.16 ± 0.09	5.73 \pm 0.12	10.0 ± 0.06	3.76 ± 0.07	7.13 ± 0.07	12.9 ± 0.08
524	= 0. 11	2.52 ± 0.01	6.33 ± 0.16	2.28 ± 0.03	3.63 ± 0.14	9.38 ± 0.14	2.79 ± 0.08	4. 24 ± 0.06	11.7 ± 0.32	3.24 ± 0.12	5.01 ± 0.08	12.2 ± 0.07
18	=0.10	2.30 ± 0.11	5.33 ± 0.16	2. 16 ± 0.04	3.40 ± 0.42	8.59 ± 0.42	2.72 ± 0.14	5.41 ± 0.10	9. 34 ± 0.12	3.13 ± 0.13	6.67 ± 0.18	12.9 ± 0.08
36 ±	=0.09	2. 79 ± 0.13	6.13 ± 0.02	2. 31 ± 0.06	3.58±0.12	8.69 ± 0.12	2.54 ± 0.11	4.92 ± 0.15	10.0 ± 0.09	3.04 ± 0.14	5.55 ± 0.14	13.5 ± 0.17
14	= 0. 08	2.65 ± 0.18	4.46 ± 0.17	2.25 ± 0.03	2. 77 ± 0.06	8.13 ± 0.06	2.55 ± 0.06	4.56 ± 0.08	10.7 ± 0.11	2.99 ± 0.06	5.01 ± 0.06	11.6 ± 0.06
394	= 0. 04	2.77 ± 0.05	5.02 ± 0.06	2.30 ± 0.07	3.55 ± 0.05	7.42 ± 0.05	2.51 ± 0.07	4.40 ± 0.13	9.69 \pm 0.12	3.20 ± 0.08	5.96 ± 0.13	13.6 ± 0.18
12	= 0. 07	1.30 ± 0.06	2.84 ± 0.08	1.80 ± 0.03	2.87±0.19	N. D.	2.18 ± 0.06	3.33 ± 0.07	7.35 ± 0.08	N. D.	3.79 ± 0.05	N. D
15 ±	±0.04	3.12 ± 0.05	5.32 ± 0.09	2.32 ± 0.06	3.65 ± 0.21	7.63 ± 0.21	2.78 ± 0.07	5.17 ± 0.08	10.6 ± 0.09	3.20 ± 0.08	5.99 ± 0.19	12.6±0.09
F 9	= 0. 06	1.22 ± 0.02	5.25 ± 0.26	1.96 ± 0.06	2. 78 ± 0.05	8.06 ± 0.05	2.25 ± 0.09	4.31 ± 0.13	10.2 ± 0.14	3.15 ± 0.06	5.00 ± 0.08	13.7 ± 0.08
T 8	= 0. 08	1.29 ± 0.05	3.18±0.12	1.28 ± 0.04	N. D.	N. D.	N. D.	N. D.	N. D.	N. D.	N. D.	N. D.
T L	=0.04	2.18±0.06	6.78 ± 0.09	2.27 ± 0.06	3.94 ± 0.10	8. 24 ± 0.10	2.65 ± 0.09	4.40 ± 0.12	11.6 ± 0.45	3.15 ± 0.10	6.07 ± 0.09	14.9±0.10
121	=0.10	2.34±0.10	6.84 ± 0.06	2.28 ± 0.06	3.17 ± 0.08	8.92 ± 0.08	2.80 ± 0.06	3.91 ± 0.11	10.9 ± 0.10	3.64 ± 0.16	5.92 ± 0.08	N. D.
16	=0.07	2.59 ± 0.05	6.84 ± 0.05	2.79 ± 0.11	3.21 ± 0.14	 8. 76±0. 14 	2.95 ± 0.07	3.99 ± 0.08	10.3 ± 0.35	3.64 ± 0.06	5.29 ± 0.04	12.2 ± 0.07
33+	-0.05	4.14 ± 0.00	8.09±0.07	2.59 ± 0.09	5.72 ± 0.03	11.1 ± 0.06	N. D.	N. D.	N. D.	3.28 ± 0.02	N. D.	N. D.
18	:0.08	4 . 25±0. 10	8.26±0.17	2. 66 ± 0.07	5.93 ± 0.17	11.9 ± 0.17	N. D.	N. D.	N. D.	3.22 ± 0.08	N. D.	16.5 ± 0.23
3+	:0.08	4.00 ± 0.05	7.93 ± 0.59	2.45 ± 0.05	5.77±0.13	11.1 ± 0.13	N. D.	N. D.	N. D.	3.23 ± 0.06	7.18±0.10	N. D.
41	0.10	4.47±0.07	8.80±0.13	2.74 ± 0.05	5.99 ± 0.10	12.3±0.10	N. D.	N. D.	N. D.	3.22 ± 0.06	N. D.	16.5 ± 0.23
											Z)	D.: 非観測]

付表 I = 1 水和所写 2 ヶ月日から 8 ヶ月日 (µm) Appendix 1-1 : A table of hydration rim thickness from two months to eight months (µm)

付表 $1-2$ 水和層厚 $10 + 月目から 16 + 月日 (\mum)$ Appendix 1-2: A table of hydration rim thickness from ten months to 16 months (μ m)
--

	152°C	.9±0.13	5 ± 0.09	0 ± 0.09	$.4\pm 0.14$	0 ± 0.81	N. D.	.7±0.07	.8±0.09	$.1\pm 0.10$	N. D.	$.0\pm 0.03$	$.4\pm 0.09$.3±0.07	N. D.	N. D.	4 ± 0.08	8±0.08	N. D.	3 ± 0.09	N. D.	8±0.11	5 ± 0.13	8±0.10	N. D.	N. D.	N. D.	N. D.	N. D.	3 ± 0.10	2 ± 0.07	1 ± 0.15	N. D.	N. D.	N. D.	N. D.	「日本田田山」
16Months	126°C	8.45±0.07 18	8.88±0.06 19	9.64 \pm 0.14 21	9.44 \pm 0.06 21	N. D. 19	N. D.	7.50 \pm 0.05 20	11.1 ± 0.07 23	N. D. 22	10.2 ± 0.08	8.22±0.05 22	$12.1 \pm 0.05 22$	N. D. 24	9.78±0.10	11.2 ±0.12	11.4 ± 0.11 23	10.5 ± 0.06 20	7.11±0.40	8.52±0.15 20.	N. D.	8.00±0.07 19.	$11.2 \pm 0.08 20$	7.65 \pm 0.08 20.	N. D.	N. D.	N. D.	11.1 ± 0.22	N. D.	10.8 ± 0.10 22.	N. D. 20.	N. D. 21.	N. D.	N. D.	N. D.	N. D.	UN)
	104°C	4.49 ± 0.05	4.61±0.06	4.48±0.10	4. 91 ± 0.06	4. 02 ± 0.05	4 . 71 ± 0. 07	5. 14 ± 0.05	5.22 \pm 0.08	4 . 89±0. 05	4 . 33±0. 06	4. 79 ± 0.04	5.03 ± 0.05	5.50 ± 0.05	4 . 97±0. 06	5.29 ± 0.06	5.09 ± 0.06	5.19 ± 0.07	4.60 ± 0.03	5.06 ± 0.05	4 . 77±0.09	4.82 ± 0.09	4.42 ± 0.04	4 . 82±0. 06	4.59 ± 0.09	3.11 ± 0.08	4 . 88±0. 06	5.21 ± 0.04	N. D.	 28±0.05 	5. 14 ± 0.05	5. 19 ± 0.09	N. D.	N. D.	N. D.	N.D.	
14Months	152°C	17.3 ± 0.05	17.7 ± 0.07	19.0 ± 0.09	19.6 ± 0.04	16.6 ± 0.11	N. D.	18.5 ± 0.06	21.7 ± 0.13	19.4 ± 0.06	N. D.	21.4 ± 0.10	19.5 ± 0.06	25.3 ± 0.09	20.2 ± 0.11	N. D.	22.4 ± 0.08	N. D.	N. D.	18.6 ± 0.10	16.6 ± 0.08	17.6±0.12	19.0 ± 0.09	18.3±0.09	N. D.	N. D.	N. D.	N. D.	N. D.	21.3±0.10	18.0 ± 0.08	N. D.	N. D.	N. D.	N. D.	N. D.	
	126°C	8.85±0.10	8.83±0.07	9.26 ± 0.10	9.34 \pm 0.13	7.97 ± 0.04	8.20 ± 0.05	7.68±0.14	10.2 ± 0.08	9.09 ± 0.06	8.34±0.14	8.96±0.10	11.4 ± 0.08	9.60 ± 0.07	9.75 \pm 0.08	10.1 ± 0.11	9.51 \pm 0.08	9.32 ± 0.10	9.66 \pm 0.11	10.6 ± 0.27	7.40 ± 0.12	9.35 ± 0.08	9.43 ± 0.06	7.44±0.12	N. D.	N. D.	8.29±0.12	 8. 16±0. 09 	N. D.	9.66 ± 0.12	9.65 \pm 0.14	8.20 ± 0.09	N. D.	N. D.	N. D.	N. D.	
	104°C	4.24 ± 0.10	4.30 ± 0.05	4.50 ± 0.09	4.41 ± 0.12	4.17 ± 0.09	4.18 ± 0.05	4.82 ± 0.09	5.00 ± 0.09	4.73 ± 0.13	4.16 ± 0.04	4.43 ± 0.13	4.99 ± 0.08	4.93 ± 0.09	4.54 ± 0.09	4.88 ± 0.07	4.64 ± 0.10	5.01 ± 0.06	4.38 ± 0.06	4.78 ± 0.09	4.63 ± 0.14	4. 50 ± 0.12	4.04 ± 0.08	4. 39 ± 0.08	4.28 ± 0.07	2.85 ± 0.09	4.55 ± 0.08	5. 21 ± 0.06	N. D.	4 . 42±0. 11	5.03 ± 0.11	4 . 81±0. 11	4.60 ± 0.07	4.23 ± 0.03	4.65 ± 0.10	4. 28 ± 0.07	
12Months	152°C	N. D.	15.5 ± 0.08	17.3 ± 0.05	N. D.	N. D.	18.2 ± 0.04	16.5 ± 0.11	19.4 ± 0.13	17.2 ± 0.10	N. D.	19.1 ± 0.12	17.9 ± 0.07	22.1 ± 0.06	17.1 ± 0.07	N. D.	21.7 ± 0.20	16.6 ± 0.10	16.5 ± 0.11	16.6 ± 0.10	N. D.	15.8 ± 0.08	16.3 ± 0.13	16.7 ± 0.08	N. D.	N. D.	17.9 ± 0.10	17.7 ± 0.10	N. D.	18.9 ± 0.12	N. D.	16.3 ± 0.07	17.8 ± 0.09	17.6 ± 0.04	17.6 ± 0.05	18.0 ± 0.06	
	126°C	8.20 ± 0.07	8.43±0.12	8.46±0.14	8.50 ± 0.12	7.86 ± 0.08	7.34 ± 0.14	7.16 ± 0.07	9.86 ± 0.08	8.36±0.10	8.17 \pm 0.10	8.83 ± 0.09	10.8 ± 0.15	9.20 ± 0.14	9.03 ± 0.15	9.21 ± 0.11	8.90 ± 0.17	8.59 ± 0.15	8.29 ± 0.06	8.96 ± 0.05	6.43 ± 0.13	8.28±0.12	8.72±0.15	6.36 ± 0.06	9.14 ± 0.09	N. D.	7.50 ± 0.15	7.58 \pm 0.13	N. D.	8.86±0.11	8.89 ± 0.06	7.18 ± 0.08	8.26±0.12	8.31 ± 0.05	8.46 ± 0.08	8.12±0.07	
	104°C	4.00 ± 0.05	4.04 ± 0.07	4.05 ± 0.10	4.14 ± 0.11	4.10 ± 0.07	3.86 ± 0.06	4.28 ± 0.07	4 . 35±0. 07	4.21 ± 0.04	4.02 ± 0.06	4 . 14±0. 11	4.25 ± 0.08	4.32 ± 0.06	4.00 ± 0.04	4.24 ± 0.05	4.20 ± 0.11	4.45 ± 0.09	4.21 ± 0.05	4.33±0.09	4.20 ± 0.06	4.24 ± 0.11	3.80 ± 0.13	3.94 ± 0.06	3.83 ± 0.09	2.55 ± 0.08	4.23 ± 0.08	4 . 88±0. 12	N. D.	4.15 ± 0.06	4.74 \pm 0.13	4.37±0.14	3.83 ± 0.09	3.69 ± 0.03	3.91 ± 0.08	3.65 ± 0.12	
10Months	152°C	13.7 ± 0.21	14.0 ± 0.08	15.2 ± 0.11	16.0 ± 0.18	14.3 ± 0.06	16.5 ± 0.09	14.6±0.11	18.0±0.12	16.2 ± 0.09	15.6 ± 0.10	16.3 ± 0.07	16.7±0.11	19.1 ± 0.12	15.5 ± 0.13	N. D.	19.3 ± 0.14	14.3 ± 0.07	13.3 ± 0.07	14.3 ± 0.07	N. D.	15.6 ± 0.04	15.1 ± 0.13	13.9 ± 0.08	15.9 ± 0.04	N. D.	15.3 ± 0.11	14.9 ± 0.13	N. D.	16.2 ± 0.09	14.8±0.16	N. D.	16.93 ± 0.12	17.13 ± 0.11	16.99 ± 0.09	17.25 ± 0.09	
	126°C	7.28 ± 0.09	8.01±0.12	7.97 ± 0.08	7.54 ± 0.09	6.50 ± 0.06	6.68±0.17	6.56 ± 0.15	9.43 ± 0.10	7.90 ± 0.14	7.62±0.11	7.82±0.13	9.78±0.07	8.39±0.10	8.11±0.13	8.70±0.14	8.94 ± 0.06	7.77±0.10	7.37 ± 0.06	8.81±0.12	5.70 ± 0.12	7.60±0.12	7.81±0.10	5.47 ± 0.09	8.42 ± 0.09	N. D.	6.84 ± 0.08	6.52 ± 0.08	N. D.	7.84±0.17	7.03 ± 0.06	6.53 ± 0.10	7.85 ± 0.04	7.75 ± 0.07	8.37±0.06	7.56 ± 0.09	
	104°C	3.65 ± 0.05	3.65 ± 0.07	3.73 ± 0.09	3.84 ± 0.09	3. 77±0. 11	3.41 ± 0.12	4.05 ± 0.10	3.92 ± 0.04	3.88 ± 0.06	3.61 ± 0.04	3.76 ± 0.13	3.84 ± 0.09	3.70 ± 0.07	3.46 ± 0.03	3.93 ± 0.07	3.81 ± 0.07	4.07 ± 0.05	3.89 ± 0.09	4.11 ± 0.04	3.97 ± 0.05	3.81 ± 0.09	3.36 ± 0.09	3.32 ± 0.07	3.49 ± 0.09	N. D.	3.66 ± 0.08	4.08 ± 0.06	N. D.	3.93 ± 0.03	4.18 ± 0.08	4.06 ± 0.05	3.52 ± 0.24	3.49 ± 0.09	3.51 ± 0.04	3.64 ± 0.06	
	No.	-	2	۳ ا	4	2	9	2	8	6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	

A Relationship between Hydration Rate and Chemical Composition of Obsidian

Keita WATANABE, Masao SUZUKI

Rikkyo University 34-1 Nishi-Ikebukuro 3-chome, Toshima-ku, Tokyo, 171-8501, JAPAN

We examined the relationship between chemical composition and hydration rates of 31 geologic source obsidians from Japan, by INAA (Instrumental Neutron Activation Analysis) and EDXRF (Energy Dispersive X-ray Fluorescence) for chemical constituents, and by accelerated hydration experiments for creating artificial hydration layers at elevated temperatures at 152, 126, and 104 degrees Celsius for eight two-month terms, a total of 16 months using hydration reactors. As a result, we couldn't find statistically significant correlation between chemical constituents and hydration rates, except for structural and total water contents of obsidians, as previously reported elsewhere.